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This is a review of well established and recently introduced contact-force models that are used in the
dynamical analysis of multibody systems. In particular, two contact groups have been investigated: the
general (point contact) and the cylindrical (line contact) models. For the point-contacts group, 20 di�erent
models are listed and a dozen are used in numerical simulations for comparison. While for the cylindrical-
contacts group 10 models are listed and most of them are compared on the basis of results of numerical
simulations.

Basic numerical experiments are used to compare the evolution of the contact force during the contact
process for the presented general contact-force models with energy dissipation and cylindrical contact-force
models with and without energy dissipation at the contacts. The e�ects of the di�erent hysteresis-damping
models on the presented general contact-force models are compared. Furthermore, the cylindrical contact-
force models are compared in terms of the contact force and the hysteresis damping in the contact.

The objective of this review is to o�er basic guidelines for the selection of the proper contact formulation
for a speci�c application in the analysis of multibody dynamics with continuous contacts-impact events.
Twenty general contact-force models are presented in this research and more than 10 cylindrical continuous
contact-force models are presented and compared. Furthermore, a hysteresis-damping e�ect in cylindrical
contact-force models is researched and presented.

Keywords contact models, contact forces, multibody dynamics, revolute clearance joints

1 Introduction

Research activities in the area of multibody dynamics have increased signi�cantly in recent decades, mainly
due to the market demand for high quality products by the rapid progress in computer technology and the
development of appropriate theories of dynamics that enable the modeling of dynamical systems with contacts
in a variety of engineering applications, such as: civil and infrastructure applications [1�3], granular materials [4],
designing parts or assemblies of mechanical systems [5�10], railway dynamics [11�14], crash analysis [15�17],
bio-mechanics [18�24], robotics [25�27], mechanisms [28�32], vibro-impact drilling [33], bearing elements [34]
and others [35,36]. Multibody dynamics can be categorized as the study of mechanical systems assembled from
several bodies that are interconnected with kinematic constraints that restrict their relative movement and are
subjected to the acting external forces [37, 38]. These forces can include inertia or gravitational forces, state-
dependent forces or contact forces generated by the contacts between the bodies. The intensive impact can often
result in limited operation or the failure of a mechanical system due to vibration [39], load propagation [40],
fatigue [41], cracks [42], wear [43] or any other cause, leading to a non-functional state.

It is important to mention that the bodies that are assembled in a multibody system can be considered
as rigid or deformable. A body can be considered as rigid when its deformations are small, such that they
do not a�ect the global motion of the body itself [44]. It is assumed that rigid bodies are a representation
of actual mechanical systems, although they are not completely rigid in nature. Many mechanical systems
are assembled from rigid and deformable bodies or rigid bodies with soft surfaces or bodies that are rigid
enough to be considered rigid overall, although they can experience signi�cant local deformations during the
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contact-impact process. Consequently, a contact-evaluation procedure must be able to model the dynamics of
the contact between compliant surfaces [45].

In a multibody system impact occurs when two bodies collide [46]. The main properties of the contact-impact
process are: very short durations, large contact forces, rapid dissipations of the energy and high accelerations
and decelerations of the contacting bodies [47]. The continuous contact-impact process is divided into two
phases: compression and restitution. At the beginning of the contact process, the start of the compression
phase, the contact force increases simultaneously with the contact deformation and reaches its maximum value
at the end of the compression phase. The restitution or expansion phase follows the compression phase, where
the energy that is stored during the compression phase drives the bodies in contact apart, and it ends when the
two bodies are separated. Consequently, some energy, due to internal damping [48], is lost through vibrations,
heat, sound and in other forms [49]. It was found that perfectly elastic collisions between two bodies dissipate
energy, due to the transformation of the initial kinetic energy into internal vibrations after contact [50]. Thus,
the initially developed elastic models needed to be developed to enable the dissipation of energy during the
contact-impact process. One of the most widely used concepts to consider energy dissipation is based on the use
of coe�cient of restitution. This parameter has di�erent de�nitions and one of the most popular and commonly
used is Newton's law of restitution, also known as the kinematic coe�cient of restitution. It is de�ned as the
ratio of the post-impact relative velocity to the pre-impact relative velocity of the body going through the
contact-impact process. A positive value of the relative contact velocity in the normal direction between two
contact points on each body indicates that the bodies are approaching, during the compression phase, and
reaches a value of zero at the point of maximum contact deformation, and a negative value of the relative
contact velocity in the normal direction indicates that the bodies are moving away from each other during the
restitution phase.

When performing a dynamical analysis of a multibody system it is important to �nd an accurate time
value for the transition between the di�erent states, speci�cally the transition between the non-contact and the
contact states. If the time value at the start of the contact is not detected properly, the initial contact force
might become abnormally large due to the arti�cially large initial indentation between the bodies in contact.
This numerical problem leads to an arti�cial increase in the mechanical energy of the system and can also
stall the integration process. To overcome this shortcoming, close control of the numerical procedure, which
automatically detects and evaluates all the initial contact situations e�ciently, is required [51]. In practice, when
working with numerical simulations, most of the processor time is used on contact-detection tasks. The contact
between two bodies can be due to the free movement of both bodies or due to the clearances in a mechanical joint
(i.e., a planar revolute clearance joint can be considered as a special type of internal contact between the two
cylinders) [52�54]. Recently, a uni�ed approach to the modeling of mechanical joints with and without clearances
was introduced in the frame of multibody dynamics [55] and the e�ect of a 3D revolute clearance joint on the
engineering application of planar mechanisms was investigated and validated based on experimental data [56].
When working on the numerical simulations of multibody systems [57,58] an experimental investigation [59�62]
is also important to successfully characterize the parameters of the dynamics [32,63] or to validate the numerical
results [64].

In general, the contact-impact event in multibody dynamics can be evaluated based on the continuous
method, also known as the smooth approach, at the force-acceleration level [65], or based on the unilateral
geometrical constraints, also known as the non-smooth approach, at the impulse-velocity level [66]. There
are three main features that de�ne these two methods: (i) the location of the contact points, (ii) the relative
penetration or contact deformation between two bodies and (iii) the contact forces [67]. The contact points on
both bodies are coincident, while some local deformation at the contact is allowed with the penalty method.
The contact deformation represents a key value as it is used to evaluate the contact force according to the
appropriate constitutive law [68].

Another approach to modeling the contact-impact event in the dynamic analysis of multibody systems,
for the non-smooth approach, is based on impulse-momentum [69] theory. This has been primarily applied to
impacts between rigid bodies [47]. The theory of impulse-momentum used in modeling the contact-impact event
assumes that the deformation in the contact remains small in comparison to the overall geometry of the colliding
bodies and that the time interval of the contact-impact process is su�ciently brief. Therefore, the potential
energy of the mechanical system does not change and so there are no changes in the system con�guration and
all the other external forces can be considered negligible. The changes in velocity occur instantly, as a result
of the large impact forces. When implementing this approach in the computer software code only a minimum
penetration is allowed to detect the contact in a numerical manner and this not used to evaluate the size of the
contact impulse. The energy-dissipation e�ect is included via the relation between the impulse of the contact
force in the compression and restitution phases and the coe�cient of restitution [70].

During the dynamical analysis the state variables of a multibody system during a contact-impact event can
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be evaluated using either a continuous or a discontinuous approach. The penalty method is the most frequently
used continuous approach, where the contact forces and the deformations are modeled with a set of spring-
damper elements that represent the surface compliance of the contact bodies [71]. In the non-smooth approach,
the unilateral constraints are solved as a linear complementary problem (LCP) [72�76]. When the contact is
considered as a contact between two cylinders based on the continuous approach, a suitable contact-force law
should be used. In fact it is advisable [77] to use one of the cylindrical contact-force models summarized in this
study, however other models can also be used [67,78�80].

This work focuses on presenting and reviewing di�erent continuous contact-force models for point and line
contacts that have been used in a variety of multibody applications. The evolution of both types of contacts,
based on geometry, and the developed contact-force models are presented and compared. Besides the de�nitions,
basic multibody systems are also used for the comparison of the models. The main objective of this manuscript is
to provide users with a common platform where they can easily �nd developed continuous contact-force models,
for general and cylindrical contact geometry, and compare them so as to select the most suitable continuous
contact-force model. The focus is also on energy-dissipation models, which are compared for general contact
force models and further discussed for cylindrical contact-force models.

This study is organized as follows. Section 2 presents the developed general contact-force models that are
based on a point contact between two spheres and their comparison based on a simple dynamical system. Section
4 presents the developed cylindrical contact-force models and their comparison based on a simple dynamical
system with an internal contact between two cylinders. A discussion about the integration of the dissipation in
the cylindrical contact-force models is presented in Section 6. The conclusions are drawn in Section 7.

2 Review of the general contact-force models

The foundations of pure elastic contact-force models were laid by Hertz [81], who concluded that, in general, a
contact area was elliptical and no energy dissipation was considered during the contact-impact process. This
led several researchers to develop more advanced contact-force models that take this energy dissipation into
account.

A thorough overview of general contact-force models was made by [65, 67], while some cylindrical contact-
force models were researched and compared by Pereira et al. [77, 82]. For a greater computational e�ciency
of the numerical simulation and to avoid convergence problems, during each integration time step a contact-
force model that represents an explicit correlation between the contact deformation and the contact force is
advised [77]. This explicit correlation between the contact deformation and the contact force is de�ned using
the Lankarani-Nikravesh contact-force model for a general contact [71,83] and has been used in several studies
of rigid [84] and rigid-�exible [85] multibody systems. Recently, an enhanced cylindrical contact-force model
was developed for an easier implementation in computer software codes [86], and it was also used in research
of the dynamics of chain drives using a generalized revolute clearance-joint formulation [87]. The cylindrical
contact-force models generally represent the contact force as an implicit function of the contact deformation
and do not account for the energy dissipation during the contact process. The lack of energy dissipation with
cylindrical contact-force models can be overcome by including the hysteresis damping after the contact force
has been evaluated, or by using a model that de�nes an explicit relationship between the contact deformation
and the contact force, such as an enhanced cylindrical contact-force model [86]. In his research Hertz concluded
that, in general, a contact surface has an elliptical shape [48, 88, 89]. Hertz's contact law relates the contact
force to a nonlinear power function of the indentation and can be expressed as:

Fn = Kδn, (1)

where K is the contact-sti�ness parameter, δ represents the relative indentation between the contacting bodies
and n is the nonlinear power exponent that is determined from the material and the geometrical properties of
the local region of the bodies in contact. These contact parameters, but principally the contact sti�ness, can
be evaluated numerically [90,91] or experimentally [92].

The value of the contact-sti�ness parameter is evaluated di�erently for each type of contact geometry, and
for a simple geometrical shape the analytical expressions are de�ned as follow. For the contact between two
spheres with radii Ri and Rj the contact sti�ness is evaluated as [48]:

K =
4

3 (hi + hj)

√
RiRj
Ri +Rj

, (2)
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where hk is de�ned for the k-th body as:

hk =
1− ν2

k

Ek
k = i, j, (3)

and the parameters Ek and νk are the modulus of elasticity and the Poisson's ratio and are dependent on the
material properties. For the contact between a sphere and a plane, the contact sti�ness is evaluated as [65]:

K =
4
√
R

3 (hi + hj)
, (4)

where the parameter R is the radius of the sphere. For the contact between two planar surfaces the contact
sti�ness is evaluated as [93]:

K =
a

0, 475 (hi + hj)
, (5)

and a is the half width of the contact.
It should be emphasized that, based on the de�nition of the curvature, the radius has negative values for

concave surfaces and positive values for convex surfaces [77]. The parameter δ is referred to as the relative
penetration depth, i.e., the contact deformation, for two bodies and n is the nonlinear exponent that depends
on the material properties and the geometry in the local contact area.

Perfectly elastic contact-force models do not account for the energy dissipation in the contact that is present
in mechanical systems. Therefore, it is not possible to model the compression and restitution phase of the
contact with the contact model developed by Hertz. The model developed by Kelvin and Voigt is a basic model
that includes the energy dissipation and is modeled as a linear spring and a linear damper element [48]. These
two models are combined in parallel and the contact force is evaluated as:

Fn = Kδ +Dδ̇, (6)

where the parameter K represents the linear elastic force, the parameter D represents the force-dissipation
(energy-dissipation) coe�cient during the contact process and δ̇ is the normal component of the relative contact
velocity. Due to its simple de�nition, this model was used in several studies [94�96]. Khulief and Shabana used
the Kelvin-Voigt model for the contact between �exible bodies [97], while it was also used in an evaluation for
the vertical contact forces on a tire in vehicle dynamics [98].

The linear Kelvin-Voigt model does not represent the non-linearity of the whole contact process and is only
suitable for contacts at higher impact velocities [65]. In the research by Dubowsky et al. it is suggested that the
dissipation component of the contact force is a nonlinear function of the contact deformation and the normal
component of the relative contact velocity. This has several disadvantages. At the start of the contact process,
when the contact deformation is equal to zero [51], the dissipation component of the contact force has a non-
zero value, which is physically inconsistent. At the beginning of the contact process the elastic and dissipative
components of the contact force have to be equal to zero. Furthermore, at the end of the contact process (i.e.,
at the end of the restitution phase) the contact deformation depth is equal to zero and the normal component
of the relative contact velocity is negative, which is usually physically inconsistent, as two bodies cannot attract
each other. During the entire contact process the coe�cient of dissipation is constant, which results in a
constant dissipation in the compression-and-restitution phase, which is physically inconsistent [99, 100]. The
model suggested by Hunt and Crossley evaluates the contact process more accurately. In their work Hunt and
Crossley state that the exponent of the damping coe�cient has to be equal to the exponent of a linear spring.
The contact force is based on the Hertzian contact model and the non-linear viscous-elastic element, which
accounts for the damping and depends on the penetration depth, and has the form [101]:

Fn = Kδn + χδnδ̇, (7)

where the parameter χ is the hysteresis damping factor and is de�ned as:

χ =
3

2

K

δ̇0
(1− cr) , (8)

where δ̇0 is the initial relative contact velocity in the normal direction and cr is the coe�cient of restitution.
Eq.(7) can be substituted into Eq.(8) and the contact force can be evaluated using the following form:

Fn = Kδn

(
1 +

3 (1− cr)
2

δ̇

δ̇0

)
(9)
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Due to the problems associated with evaluating the contact properties, such as the contact sti�ness and the
coe�cient of restitution, Guess et al. used the results obtained from a �nite-element analysis to evaluate the
contact properties [102]. The model of Hunt and Crossley is best for impacts with a high value of the coe�cient
of restitution, when the impact typically has a lower energy dissipation, as reported in [25, 103]. The model
proposed by Herbert and McWhannell uses the coe�cient of restitution as the main element to evaluate the
dissipation of mechanical energy during the contact process [104]. The authors used the Hunt-Crossley model
and de�ned the hysteresis-damping factor as:

χ =
6

(2cr − 1)
2

+ 3

K

δ̇0
(1− cr) , (10)

The expression for the contact force is de�ned when Eq.(10) is substituted into Eq.(7):

Fn = Kδn

(
1 +

6 (1− cr)
(2cr − 1)

2
+ 3

δ̇

δ̇0

)
. (11)

The model of Herbert and McWhannell can be considered as an enhanced Hunt-Crossley model. The di�erence
between the hysteresis-damping factors de�ned with Eqs. (8) and (10) is equal to 1.5% [104]. This contact model
was mostly used in the dynamic analysis of gears [105,106]. The authors Lee and Wang in [107] suggested a new
factor for the hysteresis-damping. The main objective was to ful�ll the boundary conditions of the hysteresis-
damping factor. Furthermore, the value of the dissipative component of the contact force is equal to zero when
the contact deformation is equal to zero and when the normal component of the relative contact velocity is
equal to zero. The hysteresis-damping factor is de�ned as:

χ =
3

4

K

δ̇0
(1− cr) . (12)

Eq. (12) can be substituted into Eq. (7) and the normal contact force is evaluated as:

Fn = Kδn

(
1 +

3

4

δ̇

δ̇0
(1− cr)

)
. (13)

The proposed model is relatively simple to use, but it is not often used in multibody dynamics with contact-
impact events. One of the most widely used contact-force models is the Lankarani-Nikravesh model [71]. The
hysteresis-damping factor is evaluated based on the loss of kinetic energy that is due to the internal damping.
Based on the kinetic energy before and after the contact, the loss of kinetic energy is evaluated as a function
of the coe�cient of restitution cr and the normal component of the relative contact velocity at the start of the
contact-impact event δ̇0:

δE =
1

2
m δ̇2

0

(
1− c2r

)
, (14)

where meff is the equivalent mass de�ned as:

meff =
mimj

mi +mj
(15)

and mi,mj are the masses of the bodies i and j. The loss of kinetic energy is evaluated by integrating the
contact force over time. If it is assumed that the characteristic of the contact force in the compression phase is
equal to the restitution phase, the energy loss will be evaluated as:

δE ' 2

3

χ

K
m δ̇3

0 . (16)

The hysteresis-damping factor χ is de�ned when Eq. (14) is equal to Eq. (16):

χ =
3

4

K

δ̇0

(
1− c2r

)
. (17)

Eq. (17) is substituted into Eq. (7) and the normal contact force is evaluated as:

Fn = Kδn

(
1 +

3

4

δ̇

δ̇0

(
1− c2r

))
. (18)
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Eq. (18) is only valid when the initial relative contact velocity in the normal direction is less than the velocity
of the propagation of waves in the material de�ned as:

δ̇0 ≤ 10−5

√
E

ρ
, (19)

where ρ is the speci�c density of the material.
The developed model can be used for general contacts in mechanical systems, especially when the ratio of

the lost energy is relatively small. Furthermore, Eq. (18) works well for elastic contacts when the coe�cient
of restitution has a value close to 1. Shivaswamy has shown that for smaller contact velocities the internal
damping has a larger in�uence on the energy dissipation [108]. The Lankarani-Nikravesh model was used in
several studies [109�111] and as a starting point for others who developed new contact-force models based on
the Lankarani-Nikravesh model for use in planar mechanical systems with revolute clearance joint [112].

The model of Gonthier et al. is best for larger contact surfaces and de�nes the hysteresis-damping factor
as [103]:

χ =
d

cr

K

δ̇0
, (20)

where d represents the non-dimensional factor, de�ned as:

1 +
d

cr (1− d)
= ed(1+ 1

cr
) (21)

and can be approximated with:

d ≈ 1− c2r. (22)

The contact model of Gonthier et al. can be written as:

Fn = Kδn

[
1 +

1− c2r
cr

δ̇

δ̇0

]
. (23)

The contact-force model, Eq. (23), is mainly related to force, expressed as an explicit non-linear function of the
contact volume and the volume contact sti�ness. The unit for contact force is Newton per volume. However, a
problem can arise during an evaluation of the parameter for volume sti�ness. Zhiying and Qishao developed a
contact-force model and de�ned the hysteresis-damping factor as [113]:

χ =
3
(
1− c2r

)
e2(1−cr)

4

K

δ̇0
(24)

and the contact force is evaluated as:

Fn = Kδn

[
1 +

3
(
1− c2r

)
e2(1−cr))

4

δ̇

δ̇0

]
. (25)

The proposed model by Zhiying and Qishao is used in an analysis of the contact, with the goal being to de�ne
the correlation between the coe�cient of restitution, the contact parameters and the energy dissipated during
the contact. Another contact-force model was developed by Flores et al. [114], it is based on Hertz's contact
theory together with a hysteresis-damping parameter that includes the loss of energy during the contact process.
This loss of energy is evaluated as a function of the coe�cient of restitution and the initial contact velocity, as
de�ned by Eq. (16). The dissipated energy is evaluated by integrating of the contact force over the depth of
the contact penetration. Flores et al. evaluated the dissipated energy during a contact based on the dynamic
model of a simple pendulum in contact with a wall, as follows:

δE =
1

4
χ (1− cr) δ̇0δ̇

5
2
max, (26)

where δmax is the maximum depth of the deformation at the contact. From Eq. (14) and Eq. (26) the hysteresis
damping factor can be de�ned as:

χ =
8 (1− cr)

5cr

K

δ̇0
. (27)
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The contact force is evaluated as:

Fn = Kδn

[
1 +

8 (1− cr)
5cr

δ̇

δ̇0

]
(28)

It must be emphasized that this contact-force model was developed for situations occurring between very elastic
and very inelastic contacting materials [65]. Therefore, the suggested expression, Eq.(28), is similar to the
contact model developed by Gonthier et al., Eq. (23). The contact model developed by Hu and Guo was
intended for use in a contact between softer materials that have a smaller coe�cient of restitution, and more
elastic contacts with higher values of energy dissipation. These types of contact properties can be found in
biomechanical components, bushings, etc. The hysteresis-damping factor is de�ned based on the concentric
impact between two spheres and is [115]:

χ =
3 (1− cr)

2cr

K

δ̇0
(29)

The contact force is de�ned with the expression:

Fn = Kδn

[
1 +

3 (1− cr)
2cr

δ̇

δ̇0

]
(30)

A comparison with existing contact models shows the usability for soft and hard materials in contact [115].
In the past di�erent formulations of the hysteresis-damping factor were proposed, which are typically func-

tions of the contact sti�ness, the initial contact velocity and the coe�cient of restitution. Table 1 presents an
overview of some of the most popular expressions for the hysteresis-damping factor that have been developed
independently by di�erent authors.

3 Comparison of the general contact-force models

A simple dynamic model is used to present the comparison of the listed contact-force models, see Fig. (1). The
dynamic system is assembled from two spheres with the radius R0 = 0.02 m and the mass m = 9.2 kg. Sphere
i has an initial velocity vi0, while sphere j is stationary. The relative contact sti�ness for the contact between

two spheres is equal to 5.2× 109 N/m
3
2 and the restitution coe�cient cr is in the range from 0 to 1, to better

understand and present the amount of dissipated energy due to the coe�cient of restitution.

(a) Before contact. (b) During contact. (c) After contact.

Fig. 1. Contact-impact process between two spheres.

A comparison of the hysteresis-damping factor models that are listed in Table 1 and the use of an analytical
function to evaluate the hysteresis-damping factor based on the value of the coe�cient of restitution cr are
presented in Fig. 2. It is clear that for values of the coe�cient of restitution greater than 0.7 almost all the
hysteresis-damping factor values are approximately equal and tend toward zero, when the value of the coe�cient
of restitution is equal to 1, except for the Gharib-Hurmuzlu model. Therefore, the selection of the contact-force
model and its hysteresis-damping factor do not represent major di�erences for the interval from 0.7 to 1. On
the other hand, when the value of the coe�cient of restitution is small, i.e., in the interval from 0 to approx. 0.5
large di�erences in the hysteresis-damping factor are present. Consequently, the selection of the contact-force
model and its hysteresis-damping factor can have a great impact on the evaluated value of the contact force.

The evolution of the contact force versus the contact deformation during the contact process for di�erent
contact models is presented in Fig. 3. For models that include energy dissipation a greater contact force results
in a lower energy loss and a higher relative normal contact velocity at the end of the contact. A comparison of
the contact force related to the depth of contact deformation for di�erent values of the coe�cient of restitution
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Table 1

Contact-force models.

Contact-force model Constitutive law n m χ

Hertz [81] Fn = Kδ
3
2

3
2 − −

Kelvin-Voigt [48] Fn = Kδ + χδδ̇ 1 1 −

Hunt-Crossley [101] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

3(1−cr)
2

K
δ̇0

Marefka-Orin [25]

Herbert-McWhannell [104] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

6(1−cr)

(2cr−1)2+3
K
δ̇0

Lee-Wang [107] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

3(1−cr)
4

K
δ̇0

Anagnostopoulos [116] Fn = Kδ + χδδ̇ 1 1 2 − ln cr
π2+(ln cr)2

√
Kmeff

Lankarani-Nikravesh [93] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

3(1−c2r)
4

K
δ̇0

Ristow [4] Fn = Kδ
3
2 + χδδ̇ 3

2 1 Empirical value

Tsuji et al. [117] Fn = Kδ
3
2 + χδ

1
4 δ̇ 3

2
1
4 α

√
Kmeff

Lee-Herrmann [118] Fn = Kδ
3
2 +meffχδδ̇

3
2 1 Empirical value

Shäfer et al. [119] Fn = Kδ
3
2 + χδδ̇ 3

2 1 Empirical value

Jankowski [120] Fn = Kδ
3
2 + χδ

1
2 δ̇ 3

2 1 2 − ln er√
π2+(ln er)2

K
δ̇0

Zhiying-Qishao [113] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

3(1−c2r)e
2(1−cr)

4
K
δ̇0

Bordbar-Hyppänen [121] Fn = Kδ
3
2 + χδ0.65δ̇ 3

2 0.65 Empirical value
Schwager-Poschel [122]

Gonthier et al. [103] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

1−c2r
cr

K
δ̇0

Zhang-Sharf [123]

Flores et al. [114] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

8(1−cr)
5cr

K
δ̇0

Gharib-Hurmuzlu [124] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

1
cr
K
δ̇0

Brilliantov et al. [125] Fn = Kδ
3
2 + χδ

1
2 δ̇ 3

2
1
2

1
K

(3η2−η1)2

3η2+η1

(1−ν)(1−2ν)
Eν2

Hu-Guo [115] Fn = Kδ
3
2 + χδ

3
2 δ̇ 3

2
3
2

3(1−cr)
2cr

K
δ̇0

is presented in Fig. 3 and for several contact-force models that de�ne the analytical relation of the hysteresis-
damping factor χ as a function of the coe�cient of restitution. Every contact- force model is also compared to
the Hertzian contact-force model that does not consider energy dissipation.

A force-indentation phase diagram of di�erent contact-force models for di�erent values of the coe�cient of
restitution are presented in Fig. 3 and compared with the Hertzian contact-force model that does not consider
for energy dissipation. It is clear that when the coe�cient of restitution is equal to 1 a force-indentation phase
diagram is the same as Hertz for the contact models that have the hysteresis-damping factor χ that tend
toward zero. Also, it is clear that if the coe�cient of restitution approaches zero, the indentation-contact depth
decreases and the magnitude of the contact force increases.

In Fig. 4 a normal component of the relative contact velocity relative to the contact-deformation depth is
shown for di�erent contact-force models. It is clear that at the start of the contact, when the compression phase
begins, the relative normal contact velocity equals 0.3 m/s for all the contact models. Through contact evolution
the compression phase ends when the relative normal contact velocity is equal to zero and the maximum contact-
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Fig. 2. Hysteresis-damping factor χ as a function of the coe�cient of restitution cr.

deformation depth is reached. At this point the restitution phase begins. At the end of the contact for the
Hertzian contact model, which does not consider for energy dissipation during the contact process, the relative
normal contact velocity is equal to −0.3 m/s. Di�erent contact-force models that evaluate the energy dissipation
with di�erent hysteresis-damping models result in di�erent values for the relative normal contact velocity at
the contact �nish that coincides with the end of the restitution phase.

Fig. 5 presents the evolution of the contact force in the normal direction over time for di�erent contact-force
models. For the Hertzian contact-force model the compression phase is symmetrical to the restitution phase,
while for contact-force models that account for the energy dissipation during contact the restitution phase di�ers
from the compression phase. It is clear that if the value of the coe�cient of restitution decreases from 1 to 0,
i.e., from a perfectly elastic to a perfectly plastic contact, the duration of the contact process also decreases for
some contact-force models. Meanwhile, the magnitude of the contact force increases and the duration of the
contact process does not change for these models, but the magnitude of the contact force decreases. Fig. 6 shows
the velocity of the spheres i and j before, during and after the contact-impact event for di�erent contact-force
models at di�erent values of the coe�cient of restitution. Fig. 7 shows the kinetic energy of a multibody system
assembled from two spheres before, during and after the contact-impact event for di�erent contact-force models
with the value of the coe�cient of restitution from 0 to 1, i.e., from a perfectly plastic to a perfectly elastic
contact situation. It is clear that the Hertzian contact-force model does not account for the energy dissipation
during contact; therefore, the kinetic energy of the system after the contact is equal to the kinetic energy before
the contact of the multibody system.

The output coe�cient of restitution can be evaluated as [70]:

eN =
vn
v0
, (31)

where vn is the relative normal contact velocity at the end of the contact and v0 is the initial relative normal
contact velocity (Newtons's kinematic impact law). The coe�cient of restitution is evaluated with Eq. (31)
from the results of the numerical simulations for di�erent contact-force models.

When performing numerical simulations the value of the coe�cient of restitution, cr, is set by the user input
and used during the numerical simulations. On the other hand, the value of the coe�cient of restitution can be
evaluated from the numerical results in the post-processing stage. This evaluation can be made using Eq. (31)
as the ratio of the relative contact velocity between the end and the beginning of the contact. In Table 2 a
comparison between the evaluated values of the coe�cient of restitution eN , using Eq. (31), and the user-de�ned
value of the coe�cient of restitution cr is presented for di�erent contact-force models. The evaluated values of
eN are based on the numerical data presented in Fig. 4 and Fig. 6.

The e�ect of the coe�cient of restitution on the loss of mechanical energy during the impact between two
bodies for several contact-force models is shown in Fig. 8.

The time interval for the contact process is related to the value of the coe�cient of restitution. The contact
time for the di�erent contact-force models relative to the contact time for the Hertzian contact model at di�erent
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Fig. 3. Force-indentation relation for di�erent contact-force models for a direct-central impact of two spheres
and for di�erent values of the coe�cient of restitution.

values of the coe�cient of restitution is presented in Fig. 9.
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Fig. 4. Relative normal contact velocity vs. the deformation relation.
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Fig. 5. Contact force during the contact-impact process.
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Ṙi
x

Ṙj
x

3.33 3.34 3.35 3.36

t [ms]

0.0

0.1

0.2

0.3

0.4

Ṙ
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Fig. 6. Velocity of the spheres before, during and after the contact-impact event for di�erent values of the
coe�cient of restitution.
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Fig. 7. Mechanical energy of a dynamical system over time during the contact-impact event for di�erent
coe�cient of restitution relative to the Hertzian contact model.
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Table 2

Evaluated values of the kinetic coe�cient of restitution eN compared to the user-de�ned values cr.

User-de�ned values of the coe�cient of restitution - cr

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Contact model Evaluated values of the kinetic coe�cient of restitution - eN

Hertz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hunt-Crossley 0.49 0.52 0.55 0.58 0.62 0.66 0.71 0.77 0.83 0.91 1.00
Herbert-McWhannell 0.49 0.49 0.50 0.52 0.55 0.59 0.65 0.72 0.81 0.90 1.00
Lee-Wang 0.66 0.69 0.71 0.74 0.77 0.80 0.83 0.87 0.91 0.95 1.00
Anagnostopoulos 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lankarani-Nikravesh 0.66 0.67 0.67 0.68 0.70 0.73 0.76 0.80 0.85 0.91 1.00
Jankowski 0.07 0.44 0.63 0.74 0.80 0.85 0.89 0.91 0.94 0.96 1.00
Zhiying-Qishao 0.20 0.24 0.28 0.34 0.42 0.50 0.59 0.69 0.80 0.91 1.01
Gonthier et al 0.03 0.12 0.22 0.32 0.42 0.51 0.59 0.68 0.78 0.89 1.01
Flores et al 0.00 0.09 0.17 0.27 0.38 0.49 0.59 0.70 0.80 0.91 1.01
Gharib-Hurmuzlu 0.03 0.12 0.21 0.30 0.37 0.43 0.48 0.52 0.55 0.58 0.61
Hu-Guo 0.01 0.15 0.31 0.45 0.56 0.66 0.75 0.82 0.89 0.95 1.00
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Fig. 8. Loss of mechanical energy versus coe�cient of restitution for di�erent contact models.
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contact models.
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4 Review of the cylindrical contact-force models

Most of the analytical cylindrical contact-force models, de�ning the relationship between the contact penetration
and the applied contact force, that can be used for the internal or external contact between two cylindrical bodies,
are based on the Hertzian pressure distribution [88, 89]. These models are all nonlinear as the penetration is
presented as an implicit function of the contact force. There are three important drawbacks to these models [77].
First, (i) the contact force cannot be de�ned as an explicit function of the indentation, i.e., in a closed form,
and this presents a problem when an iterative solution technique has to be used, i.e., a Newton-Rhapson
algorithm [126], for each integration time step in the analysis of multibody dynamics [31, 127�129]. A typical
internal cylindrical contact can also be used to model roller-bearing elements [130].

The Hertzian theory is based on an elastostatic theory that does not account for the energy dissipated during
the contact-impact process. As a result, the Hertzian contact model cannot be used during the loading and
unloading phases of the contact unless this is a quasi-static process and the contacting bodies have well-de�ned
geometries. Furthermore, a contact-detection procedure must have available the information about any new
contact deformation at the current and previous time step to successfully detect the start of the contact-impact
event and to avoid any arti�cial energy gains in the multibody system [51]. As an iterative algorithm requires
an initial guess about the contact indentation, a good and reasonable initial approximation at the current time
step is to take the value of contact deformation calculated from the previous step as it is already evaluated, as
implemented in the software code used in this paper [131]. Second, (ii) the contact models that are based on
the Hertzian theory do not guarantee the correct value of the contact force, when the size of the contact area
is about the same as the dimensions of the contact bodies, i.e., a conformal contact condition. The Hertzian
theory is valid for the conditions in a nonconformal contact, where the dimensions of the contact area are small
compared to the radii of the undeformed cylindrical bodies. Third, (iii) is the drawback related to the expressions
that use a logarithmic function for the relationship between the contact force and the contact deformation, as
the logarithmic function represents some of the mathematical and physical limitations on the internal contact
analysis.

In the previous section the development of the general contact-force models together with the de�nitions
of the hysteresis-damping factor are presented. Most of the presented cylindrical contact-force models in this
section are an implicit function of the contact deformation δ and therefore require iterative solution techniques
like a Newton-Rhapson algorithm for each integration time step. Another drawback is the lack of any energy
dissipation, which can take place in two steps: �rstly, a contact force is evaluated with a selected cylindrical
contact-force model and, secondly an energy dissipation is included via the selected hysteresis-damping factor,
as in [82,86] for the Johnson model with energy dissipation.

The contact problem for the two cylindrical bodies with radii R1 and R2 can represent a revolute clearance
joint assembled from a pin inside a cylindrical hole. Both bodies are made of isotropic material, where Ei is
the Young's modulus and ν is the Poisson's ratio.

The key to solving the contact problems between two contacting cylinders is to obtain the area of the contact
and the stress distribution. In Hertzian theory [88,132] the contact area is approximated by a rectangle of width
2a aligned with the axes of the cylinders, which can be considered as the limiting case of an elliptical contact.
The pressure distribution can be de�ned as a function of the variables a, the semi-width of the contact, and p0,
the maximum pressure at the center of the contact width:

p(x) = p0

(
1− x2

a2

) 1
2

, (32)

where x is the distance of the point from the center of the contact plane.

Fig. 10. Geometry of internal cylindrical contact - a revolute clearance joint.
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The contact-force model for a cylindrical contact, developed by Hertz for the internal contact between two
cylinders, de�nes the relationship between the depth of the contact deformation δ and the contact force per
unit length fn as:

δ =
2fn
πE∗

(
ln

(
πE∗∆R

fn

)
− 1

)
, (33)

where E∗ is the modulus of elasticity of the contact, as the deformation of both bodies in contact must be
considered, and is de�ned as [88]:

1

E∗ = hi + hj , (34)

where hk (k = i, j) is de�ned using Eq. (3). In addition, ∆R is de�ned as:

∆R = Ri ±Rj . (35)

The de�nition of Eq.(33) can be found in [132]. In the case of an external contact Eq. (35) represents the sum
of the radii of both cylinders and in the case of an internal contact Eq. (35) represents the di�erence between
the radii of both cylinders and can be considered as the clearance for the revolute clearance joint. The Johnson
model gives the best values when evaluating the contact force at the cylindrical contact in most engineering
applications [77].

Based on Hertz's contact theory a new model was developed by Johnson that deals with the contact between
two cylinders. This model de�nes the correlation between the depth of the contact deformation δ and the contact
force per unit length fn as [88]:

δ =
fn
πE∗

(
ln

(
4πE∗∆R

fn

)
− 1

)
, (36)

Eq. (36) can be used in the case of an internal or external contact between two cylinders.
In the book Formulas for Stress and Strain [133] a contact model developed by Radzimovsky is presented.

The Radzimovsky model de�nes the relationship for the distance between the centers for the contact between
external cylinders, i.e., the indentation δ and the normal contact force per unit length with an expression [134]:

δ =
fn
πE∗

(
2

3
+ ln

(
4Ri
b

)
+ ln

(
4Rj
b

))
, (37)

where, in the case of cylinders with di�erent materials, the parameter b is evaluated according to:

b = 1.60

(
fnR

E∗

) 1
2

, (38)

where E∗ is the composite modulus and evaluated with Eq. (34). In the case of similar materials the parameter
b is evaluated as:

b = 2.15

(
fnR

E∗

) 1
2

(39)

and the parameter R de�nes the relative curvature of the contact and is de�ned as:

R =
RiRj
Ri ±Rj

=
RiRj
∆R

, (40)

where the sign ± depends on the type of contact, i.e., (−) for an internal and (+) for an external contact.
Eq. (40) can be used to rewrite Eq. (37) in the form suggested by Johnson as [88]:

δ =
fn
πE∗

(
2

3
+ ln

(
8∆RE∗

b20fn

))
, (41)

where the value of the parameter b0 depends on the material properties of the colliding cylinders , i.e., it has a
value of 1.60 for di�erent materials or 2.15 for similar materials.
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Based on Hertz's contact theory an alternative contact-force model was developed by Goldsmith for the case
of an internal contact between two cylinders. The Goldsmith model relates the depth of the contact deformation
δ and the contact force Fn using the following expression [48]:

δ = Fn

(
hi + hj
L

)(
ln

(
Lm

FnR (hi + hj)

)
+ 1

)
, (42)

where R is the relative curvature of the contact and is de�ned by Eq. (35), L is the contact length and m is
the power factor. In the case when the value of m = 1, Eq. (42) guarantees the compliance of the units. The
contact-force model proposed by Goldsmith was initially developed for an internal contact, although it is also
possible to use it for an external contact, but extra caution is needed for the correct use of Eq. (40). In the case
of an internal contact, the di�erence between the radii of the cylinders is used and in the case of an external
contact the sum of the radii is used.

Based on the contact theory developed by Hertz and the contact model proposed by Goldsmith the authors
Dubowsky and Freudenstein presented their contact-force model for the internal cylindrical contact between
two cylinders [135]:

δ = Fn

(
hi + hj
L

)(
ln

(
Lm (Ri −Rj)

FnRiRj (hi + hj)

)
+ 1

)
, (43)

where L is the length of the contact and the power factor m is equal to 3. A comparative study between these
two expressions was carried out by Flores et al. [136], in which the solutions corresponding to the time variation
of indentation, the normal contact force, and the force-indentation ratio presented by these two models are
researched.

The model developed by Johnson [88], Eq. (36), is one of the most popular for de�ning the relationship
between the indentation and the contact force, and it is also the basis for the expression developed by the
ESDU 78035 Tribology Series for journal-bearing applications [137]:

δ = Fn

(
hi + hj
L

)(
ln

(
4L (Ri −Rj)
Fn (hi + hj)

)
+ 1

)
. (44)

The ESDU-78035 model is named after the publisher Engineering Sciences Data Unit, which acts as a consultant
in di�erent �elds of engineering.

In [132] Liu et al. presented the drawbacks of the contact models developed by Hertz and Persson. They
suggested that the Hertzian model can be used for larger values of clearance and smaller contact forces, while
the Persson model can be used for smaller clearance values. Based on numerical FEM results Liu et al. [132]
introduced the following explicit relationship between the contact force Fn and the depth of the deformation δ:

Fn =
1

2
πδE∗

(
δ

2 (∆R+ δ)

) 1
2

. (45)

If the dissipation element in the general contact law proposed by Lankarani and Nikravesh [71,83] is omitted,
then the deformation depth can be evaluated as:

δ =

(
3Fn

4E∗R
1
2

) 1
n

. (46)

In the case of a contact between two spheres the value of the power factor n is equal to 1.5. Assuming that the
contact force is evenly distributed along the length of the cylinders and that the boundary a�ect is ignored then
Eq. (46) can be used for the contact between two cylinders with the value of the power factor n being between
1 and 1.5 [101].

An enhanced cylindrical contact-force model was developed by Pereira et al. to overcome the shortcomings
of the basic cylindrical contact-force models that use an implicit function of the contact force Fn and the contact
deformation δ and also lack the energy dissipation.

Pereira et al. proposed an enhanced cylindrical contact-force model based on the Johnson model [83] and
a complementary �nite-element analysis valid for the internal and external cylindrical contacts. Their model
also overcomes the computational complexity as the relationship between the depth of the contact deformation
δ and the contact force Fn is de�ned explicitly as [86]:

Fn =
(a∆R+ b)LE∗

∆R
δn

(
1 +

3

4

δ̇

δ̇0

(
1− c2r

))
, (47)
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Table 3

Values for an enhanced cylindrical contact-force model.

internal contact external contact

a 0.965 0.39
b 0.0965 0.85
n Y∆R−0.005 1.094

where the parameters are the same as in Eq. (18) and the values of the parameters a, b and n are listed in
Table 3.

In the case of an internal contact the value of the parameter n is not constant; therefore, the following
expression is used to evaluate it:

Y =

{
1.51 ln (1000∆R)

−0.151
, if ∆R ∈ [0.005, 0.34954]mm,

0.0151∆R+ 1.151, if ∆R ∈ [0.34954, 10.0]mm,
(48)

and the parameter ∆R is evaluated with Eq. (35). It should be emphasized that all the parameters in this
model have units in mm.

As can be seen in Eq. (47), an expression for the hysteresis-damping factor de�ned by Lankarani and
Nikravesh is used to include the energy dissipation during the contact process. Similarly, an arbitrary de�nition
of the hysteresis-damping factor, de�ned in Section 2, can be used to include the energy dissipation as presented
in the example of a contact between two spheres (see Section 3). Similarly, a hysteresis-damping factor can be
used with an arbitrary cylindrical contact-force model, as presented in Section 6.

Table 4

Cylindrical contact-force models.

Contact force model Formulation Notes

Hertz [81] δ = 2fn
πE∗

(
ln
(
πE∗∆R
fn

)
− 1
)

Radzimovsky [134] δ = fn
πE∗

(
2
3 + ln

(
4Ri

b

)
+ ln

(
4Rj

b

))
Goldsmith [48] δ = Fn

(
hi+hj

L

)(
ln
(

Lm

FnR(hi+hj)

)
+ 1
)

m = 1

Dubowsky-Freudenstein [135] δ = Fn

(
hi+hj

L

)(
ln
(

Lm(Ri−Rj)
FnRiRj(hi+hj)

)
+ 1
)

m = 3

Lankarani-Nikravesh [71] δ =
(

3Fn

4E∗R
1
2

) 1
n

ESDU-78035 [137] δ = Fn

(
hi+hj

L

)(
ln
(

4L(Ri−Rj)
Fn(hi+hj)

)
+ 1
)

Johnson [88] δ = fn
πE∗

(
ln
(

4πE∗∆R
fn

)
− 1
)

Liu et al. [132] Fn = 1
2πδE

∗
(

δ
2(∆R+δ)

) 1
2

Pereira et al. [86] Fn = (a∆R+b)LE∗

∆R δn
(

1 + 3
4
δ̇
δ̇0

(
1− c2r

))
Persson [138] Fn =

E∗∆Rπ(b2+1)b2

2(∆R+δ) b = tan
(
ε
2

)
, ε = arccos

(
∆R

∆R+δ

)

5 Comparison of the cylindrical contact-force models

To compare the evolution of the contact force of the presented contact-force models for a cylindrical contact
a simple multibody system assembled from two cylinders, presented in Fig. 11, is used. The properties of the
multibody system are listed in Table 5.
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Fig. 11. An internal cylindrical contact.

Table 5

Properties of the multibody system.

parameter i j

m [kg] 37.6×10−3 8.29×10−3

J [kg m2] 3.01×10−6 9.36×10−8

R0

(
D0

2

)
[m] 5×10−3 4.75×10−3

L [m] 15×10−3 15×10−3

q0 [m, m, deg] [0, 0, 0] [0, 0, 0]
q̇0 [m, m, deg]/s [0, 0, 0] [0,−0.2, 0]
E [Pa] 2.1×1011 2.1×1011

ν [/] 0.3 0.3

Fig. 12 presents a comparison of the contact force per unit length for cylindrical contact-force models without
energy dissipation relative to the contact deformation depth. It is clear that the maximum value of the contact
force and the maximum value of the penetration depth for di�erent cylindrical contact-force models are very
di�erent. These maximum values of the contact force and the contact penetration depth are in an inverse
relationship when compared for di�erent models.
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Fig. 12. Contact force based on the depth of the contact deformation for an internal cylindrical contact.

Fig. 13 has a comparison of the contact force per unit length of a cylindrical contact for the presented
cylindrical contact-force models without energy dissipation relative to simulation time. It is clear that for s
shorter duration of the contact-impact process, the peak value of the contact force is larger and in the case of

21



longer durations of contact-impact process the peak value of the contact force is smaller. Because there is no
energy-dissipation included, the evolution of the contact force over time is symmetrical in the compression and
restitution phases, observed from the point of the maximum value of the contact force.
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Fig. 13. Contact force during the contact-impact process for an internal cylindrical contact.
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6 Discussion

The synthetic numerical example presented in Sec. 5 is extended here with dissipation elements. For a contact
model that de�nes an implicit relationship between the contact force and the contact deformation, an energy
dissipation is added in two steps: in the �rst step the contact force is evaluated with an iterative technique,
such as the Newton-Rhaphson method, and in the second step hysteresis damping is used to include the energy
dissipation during the contact process for each integration time step. In the numerical example a Lankarani-
Nikravesh hysteresis damping is used, Eq. (17). An enhanced cylindrical contact-force model de�nes the explicit
relationship between the deformation depth and the contact force; therefore, only one evaluation of Eq. (47)
is required for each integration time step, and it also includes an expression for the hysteresis damping of
Lankarani-Nikravesh.

In Fig. 14 a comparison of the presented cylindrical contact force models is shown. The models compared
are: Hertz (cylindrical), Johnson, Radzimovsky, Goldsmith, Dubowsky-Freudenstein, ESDU-78035, Liu et al.,
Lankarani-Nikravesh (cylindrical) and Pereira et al. All of the models represent the relationship between the
contact force and the depth of the contact deformation as an implicit function, except for the model of Pereira et
al., which de�nes the relationship between the contact force and the depth of the contact deformation explicitly.
The hysteresis damping of Lankarani-Nikravesh and the coe�cient of restitution value of 0.7 are used. The
parameters and their values for the numerical example are equal to the one used in Section 5, see Table 5.
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Fig. 14. Contact force based on the depth of the contact deformation for an internal cylindrical contact with
energy dissipation.

In Fig. 15 the comparison of the contact force for a cylindrical contact with energy dissipation is presented.
When compared to the contact force presented in Fig. 13, it is clear that without energy dissipation the contact
force in the compression shape is symmetrical with the restitution phase, but when the hysteresis damping is
used the force in the compression phase is di�erent from the restitution phase.

When dealing with the contact-impact events great care has to be taken with the selection of the contact-
force model and suitable hysteresis damping. To guarantee the quality of the numerical results an experimental
validation is recommended [84].

The contact models presented in this paper are implemented in a custom-written, open-source, computer
software code DyS that is publicly available [84]. The software automatically builds the equations of motion
for an arbitrary dynamical system and solves them numerically using appropriate numerical methods.

The relative error of the evaluated coe�cient of restitution, presented in Table 2, depending on the user-
de�ned value of the coe�cient of restitution is presented in Fig. 16 for di�erent contact-force models. The
relative error between the evaluated value of the coe�cient of restitution, eN , and the user-de�ned input value
of the coe�cient of restitution, cr, is evaluated as:

Rel. Error =
|cr − eN |

cr
. (49)
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Fig. 15. Contact force during the contact-impact process for an internal cylindrical contact with energy
dissipation.

It is clear that the relative error of the coe�cient of restitution is small for the majority of the contact-force
models, where the value of the coe�cient of restitution is greater than 0.5. Also, it is clear that the contact-force
models of Gonthier et al., Flores et al., Gharib-Hurmuzlu and Hu-Guo have small relative errors between the
input values of the of restitution and the evaluated values, based on the relative contact velocities in the normal
direction before and after the contact-impact event.
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Fig. 16. Relative error of the evaluated coe�cient of restitution, eN , if compared to the user-de�ned value, cr.
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7 Conclusions

A review and comparison of continuous contact-force models that can be used when modeling a general or
cylindrical contact between the bodies is described. In the group of general contact-force models (point contact)
20 di�erent contact-force models are listed, and numerical simulations are performed with a dozen of these
contact-force models. When comparing the dynamical response of a multibody system, i.e., a body's (sphere)
velocity before, during and after the contact, it is clear that di�erent contact force-models with a selected value
of the coe�cient of restitution have a great impact on the dynamical response. Furthermore, the dissipated
energy of the dynamical system varies signi�cantly and this di�erence increases when the value of the coe�cient
of restitution nears zero. The research focus is also on the di�erences in the energy dissipation due to the
coe�cient of restitution and the duration of the contact. In addition, these attributes are compared to the
Hertzian contact-force model. In the group of cylindrical contact-force models (line contact) the following
models are compared: Hertz (cylindrical), Johnson, Radzimovsky, Goldsmith, Dubowsky-Freudenstein, ESDU-
78035, Liu et al., Lankarani-Nikravesh (cylindrical) and Pereira et al.

The comparison of the hysteresis-damping models depending on the coe�cient of restitution is presented
and the e�ects of the hysteresis damping on the contact force, the mechanical energy and the velocity are
shown. A comparison of the evolution of the contact force during the contact-impact process for the presented
general contact-force models is made. The e�ect of hysteresis damping is compared for the presented cylindrical
contact-force models in the discussion. Also, the di�erence between the contact force for the cylindrical contact
force without energy dissipation and with energy dissipation, including the hysteresis damping, is presented.

The magnitude of contact force generally decreases, while the value of the coe�cient of restitution goes
from value 1 to value 0, i.e., from perfectly elastic contact to perfectly plastic contact, but the duration of the
contact-impact process is constant, see Fig. 5.

Based on the evaluation of the kinetic coe�cient of restitution with Eq. (31) from numerical results of
velocities before and after contact-impact process it is clear from Fig. 16 that for �ve contact force models
(Zhiying-Qishao, Gonthier et al., Flores et al., Gharib-Hurmuzlu and Hu-Guo) there is a good agreement
between user-de�ned value and the evaluated one on the whole interval, i.e., from 0 to 1. On the other hand,
for the six contact force models (Hunt-Crossley, Herbert-McWhannell, Lee-Wang, Anagnostopoulos, Lankarani-
Nikravesh and Jankowski) there is a good agreement for values of the coe�cient of restitution greater than 0.5,
therefore it is wise to use this models on the interval from 0.5 to 1 - from semi-elasto-plastic contact to perfectly
elastic contact.
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